小兔网

Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。

对比实验

资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率

操作系统CPU内存硬盘
Windows 10双核8GB机械硬盘

(1)引入所需要的模块

import requestsimport timefrom threading import Threadfrom multiprocessing import Process

(2)定义CPU密集的计算函数

def count(x, y):    # 使程序完成50万计算    c = 0    while c < 500000:        c += 1        x += x        y += y

(3)定义IO密集的文件读写函数

def write():    f = open("test.txt", "w")    for x in range(5000000):        f.write("testwrite\n")    f.close()def read():    f = open("test.txt", "r")    lines = f.readlines()    f.close()

(4) 定义网络请求函数

_head = {            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}url = "http://www.tieba.com"def http_request():    try:        webPage = requests.get(url, headers=_head)        html = webPage.text        return {"context": html}    except Exception as e:        return {"error": e}

(5)测试线性执行IO密集操作、CPU密集操作所需时间、网络请求密集型操作所需时间

# CPU密集操作t = time.time()for x in range(10):    count(1, 1)print("Line cpu", time.time() - t)# IO密集操作t = time.time()for x in range(10):    write()    read()print("Line IO", time.time() - t)# 网络请求密集型操作t = time.time()for x in range(10):    http_request()print("Line Http Request", time.time() - t)

输出

  • CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015

  • IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293

  • 网络请求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697

(6)测试多线程并发执行CPU密集操作所需时间

counts = []t = time.time()for x in range(10):    thread = Thread(target=count, args=(1,1))    counts.append(thread)    thread.start()e = counts.__len__()while True:    for th in counts:        if not th.is_alive():            e -= 1    if e <= 0:        breakprint(time.time() - t)

Output: 25.69700002670288、24.02400016784668

(7)测试多线程并发执行IO密集操作所需时间

def io():    write()    read()t = time.time()ios = []t = time.time()for x in range(10):    thread = Thread(target=count, args=(1,1))    ios.append(thread)    thread.start()e = ios.__len__()while True:    for th in ios:        if not th.is_alive():            e -= 1    if e <= 0:        breakprint(time.time() - t)

Output: 99.9240000248 、101.26400017738342、102.32200002670288

(8)测试多线程并发执行网络密集操作所需时间

t = time.time()ios = []t = time.time()for x in range(10):    thread = Thread(target=http_request)    ios.append(thread)    thread.start()e = ios.__len__()while True:    for th in ios:        if not th.is_alive():            e -= 1    if e <= 0:        breakprint("Thread Http Request", time.time() - t)

Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748

(9)测试多进程并发执行CPU密集操作所需时间

counts = []t = time.time()for x in range(10):    process = Process(target=count, args=(1,1))    counts.append(process)    process.start()e = counts.__len__()while True:    for th in counts:        if not th.is_alive():            e -= 1    if e <= 0:        breakprint("Multiprocess cpu", time.time() - t)

Output: 54.342000007629395、53.437999963760376

(10)测试多进程并发执行IO密集型操作

t = time.time()ios = []t = time.time()for x in range(10):    process = Process(target=io)    ios.append(process)    process.start()e = ios.__len__()while True:    for th in ios:        if not th.is_alive():            e -= 1    if e <= 0:        breakprint("Multiprocess IO", time.time() - t)

Output: 12.509000062942505、13.059000015258789

(11)测试多进程并发执行Http请求密集型操作

t = time.time()httprs = []t = time.time()for x in range(10):    process = Process(target=http_request)    ios.append(process)    process.start()e = httprs.__len__()while True:    for th in httprs:        if not th.is_alive():            e -= 1    if e <= 0:        breakprint("Multiprocess Http Request", time.time() - t)

Output: 0.5329999923706055、0.4760000705718994

实验结果

CPU密集型操作IO密集型操作网络请求密集型操作
线性操作94.9182499646922.461999952797.3296000004
多线程操作101.170000076224.86050009730.5053332647
多进程操作53.889999985712.78400003910.5045000315

通过上面的结果,我们可以看到:

  • 多线程在IO密集型的操作下似乎也没有很大的优势(也许IO操作的任务再繁重一些就能体现出优势),在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了

  • 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行
    2021071307440217472040

原文地址:http://blog.atomicer.cn/2016/09/30/Python%E4%B8%AD%E5%A4%9A%E7%BA%BF%E7%A8%8B%E5%92%8C%E5%A4%9A%E8%BF%9B%E7%A8%8B%E7%9A%84%E5%AF%B9%E6%AF%94/