在《C++函数重载》一节中,为了交换不同类型的变量的值,我们通过函数重载定义了四个名字相同、参数列表不同的函数,如下所示:
//交换 int 变量的值void Swap(int *a, int *b){ int temp = *a; *a = *b; *b = temp;}//交换 float 变量的值void Swap(float *a, float *b){ float temp = *a; *a = *b; *b = temp;}//交换 char 变量的值void Swap(char *a, char *b){ char temp = *a; *a = *b; *b = temp;}//交换 bool 变量的值void Swap(bool *a, bool *b){ char temp = *a; *a = *b; *b = temp;}
这些函数虽然在调用时方便了一些,但从本质上说还是定义了三个功能相同、函数体相同的函数,只是数据的类型不同而已,这看起来有点浪费代码,能不能把它们压缩成一个函数呢?
能!可以借助本节讲的函数模板。
我们知道,数据的值可以通过函数参数传递,在函数定义时数据的值是未知的,只有等到函数调用时接收了实参才能确定其值。这就是值的参数化。
在C++中,数据的类型也可以通过参数来传递,在函数定义时可以不指明具体的数据类型,当发生函数调用时,编译器可以根据传入的实参自动推断数据类型。这就是类型的参数化。
值(Value)和类型(Type)是数据的两个主要特征,它们在C++中都可以被参数化。
所谓函数模板,实际上是建立一个通用函数,它所用到的数据的类型(包括返回值类型、形参类型、局部变量类型)可以不具体指定,而是用一个虚拟的类型来代替(实际上是用一个标识符来占位),等发生函数调用时再根据传入的实参来逆推出真正的类型。这个通用函数就称为函数模板(Function Template)。
在函数模板中,数据的值和类型都被参数化了,发生函数调用时编译器会根据传入的实参来推演形参的值和类型。换个角度说,函数模板除了支持值的参数化,还支持类型的参数化。
一但定义了函数模板,就可以将类型参数用于函数定义和函数声明了。说得直白一点,原来使用 int、float、char 等内置类型的地方,都可以用类型参数来代替。
下面我们就来实践一下,将上面的四个Swap() 函数压缩为一个函数模板:
#include <iostream>using namespace std;template<typename T> void Swap(T *a, T *b){ T temp = *a; *a = *b; *b = temp;}int main(){ //交换 int 变量的值 int n1 = 100, n2 = 200; Swap(&n1, &n2); cout<<n1<<", "<<n2<<endl; //交换 float 变量的值 float f1 = 12.5, f2 = 56.93; Swap(&f1, &f2); cout<<f1<<", "<<f2<<endl; //交换 char 变量的值 char c1 = 'A', c2 = 'B'; Swap(&c1, &c2); cout<<c1<<", "<<c2<<endl; //交换 bool 变量的值 bool b1 = false, b2 = true; Swap(&b1, &b2); cout<<b1<<", "<<b2<<endl; return 0;}
运行结果:
200, 100
56.93, 12.5
B, A
1, 0
请读者重点关注第 4 行代码。template
是定义函数模板的关键字,它后面紧跟尖括号<>
,尖括号包围的是类型参数(也可以说是虚拟的类型,或者说是类型占位符)。typename
是另外一个关键字,用来声明具体的类型参数,这里的类型参数就是T
。从整体上看,template<typename T>
被称为模板头。
模板头中包含的类型参数可以用在函数定义的各个位置,包括返回值、形参列表和函数体;本例我们在形参列表和函数体中使用了类型参数T
。
类型参数的命名规则跟其他标识符的命名规则一样,不过使用 T、T1、T2、Type 等已经成为了一种惯例。
定义了函数模板后,就可以像调用普通函数一样来调用它们了。
在讲解C++函数重载时我们还没有学到引用(Reference),为了达到交换两个变量的值的目的只能使用指针,而现在我们已经对引用进行了深入讲解,不妨趁此机会来实践一把,使用引用重新实现 Swap() 这个函数模板:
#include <iostream>using namespace std;template<typename T> void Swap(T &a, T &b){ T temp = a; a = b; b = temp;}int main(){ //交换 int 变量的值 int n1 = 100, n2 = 200; Swap(n1, n2); cout<<n1<<", "<<n2<<endl; //交换 float 变量的值 float f1 = 12.5, f2 = 56.93; Swap(f1, f2); cout<<f1<<", "<<f2<<endl; //交换 char 变量的值 char c1 = 'A', c2 = 'B'; Swap(c1, c2); cout<<c1<<", "<<c2<<endl; //交换 bool 变量的值 bool b1 = false, b2 = true; Swap(b1, b2); cout<<b1<<", "<<b2<<endl; return 0;}
引用不但使得函数定义简洁明了,也使得调用函数方便了很多。整体来看,引用让编码更加漂亮。
下面我们来总结一下定义模板函数的语法:
template <typename 类型参数1 , typename 类型参数2 , ...> 返回值类型 函数名(形参列表){
//在函数体中可以使用类型参数
}
类型参数可以有多个,它们之间以逗号,
分隔。类型参数列表以< >
包围,形式参数列表以( )
包围。typename
关键字也可以使用class
关键字替代,它们没有任何区别。C++ 早期对模板的支持并不严谨,没有引入新的关键字,而是用 class 来指明类型参数,但是 class 关键字本来已经用在类的定义中了,这样做显得不太友好,所以后来 C++ 又引入了一个新的关键字 typename,专门用来定义类型参数。不过至今仍然有很多代码在使用 class 关键字,包括 C++ 标准库、一些开源程序等。
本教程会交替使用 typename 和 class,旨在让读者在别的地方遇到它们时不会感觉陌生。更改上面的 Swap() 函数,使用 class 来指明类型参数:
template<class T> void Swap(T &a, T &b){ T temp = a; a = b; b = temp;}
除了将 typename 替换为 class,其他都是一样的。
为了加深对函数模板的理解,我们再来看一个求三个数的最大值的例子:
#include <iostream>using namespace std;//声明函数模板template<typename T> T max(T a, T b, T c);int main( ){ //求三个整数的最大值 int i1, i2, i3, i_max; cin >> i1 >> i2 >> i3; i_max = max(i1,i2,i3); cout << "i_max=" << i_max << endl; //求三个浮点数的最大值 double d1, d2, d3, d_max; cin >> d1 >> d2 >> d3; d_max = max(d1,d2,d3); cout << "d_max=" << d_max << endl; //求三个长整型数的最大值 long g1, g2, g3, g_max; cin >> g1 >> g2 >> g3; g_max = max(g1,g2,g3); cout << "g_max=" << g_max << endl; return 0;}//定义函数模板template<typename T> //模板头,这里不能有分号T max(T a, T b, T c){ //函数头 T max_num = a; if(b > max_num) max_num = b; if(c > max_num) max_num = c; return max_num;}
运行结果:
12 34 100↙
i_max=100
73.234 90.2 878.23↙
d_max=878.23
344 900 1000↙
g_max=1000
函数模板也可以提前声明,不过声明时需要带上模板头,并且模板头和函数定义(声明)是一个不可分割的整体,它们可以换行,但中间不能有分号。